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We introduce the concepts of the degree and the order of ~nc~onism on the basis 

of a mathematical model of the emergence of synchronization in the form of an 

asymptotically stable integral torus in the phase plane. We investigate the exist- 

ence conditions for syncbronisms in a dynamic system described by differential 
equations with rapidly rotating phases. As an application we examine synchron- 
isms in a system of q~si-Hamlltonian objects. In recent years the phenomena 
of synchronization and resonance in dynamic systems have been subjected to in- 

tensive study, in particular, in connection with the question of the synchronization 
of satellites [l, 21 and of mechanical vibrators [3]. On the mathematical side 
the appearance of synchronization is closely connected with the theory of differ- 
ential equations with rapidly rotating phases. Here in the first place we must 



mention the works specified in [4--Y] . 

1. Definition of rynohroniam of a dynamic system, Necstaary 
condftionr for cynchronftm. We define and investigate the conditions for the 

rise of synchronisms of different degrees and orders in a dynamic system described by the 
following differential equation : 

p’ = 0) (.x.) + EB (f3, .r, E), tr’ = E,X (p, IC) + E’Y (p, 1, E) (1.1) 

Here b and J: are,respectively. r- and s-dimensional vectors, E is a small positive 

parameter. All the functions occurring in the equations are assumed to be differentiable 

with respect to E, twice continuously differentiable with respect to the components x1, 

521 * * -7 IC, of vector CC, sufficiently smooth, and 2n -periodic in the components PI, 

B 27 . . . , fi ,. of vector j3. We say that system (1.1) admits of a synchronism of degree 
m if for all sufficiently small positive & there exists in it an asymptotically-stable 

smooth integral toroidal surface of dimension r - m of the form 

% = X0 + Eh (a,, aa, . . ., a,.-,, E), U.2) 
I# = I$,” -k Eg (a,, a2, . . ., a,.-,, E) 

Here CC’ and I/I” are constant vectors, /6 and g are 2n -periodic smooth functions of the 

parameters a1,a2, . . ., ccr-mr and the m-dimensional vector 9 is related to vector 

fi by an integer ( m X r )-matrix P of rank m, so that 

$ = PB (1.3) 

Here, without loss of generality, we can assume that we take the components bn,+lr . . . , 
fir of the vector p as the parameters CQ, a,, . . . , a,._,,, and that 

A= 
Pll> PlZ, . . ., PI, 

P ml’ P,p . .7 Pmm #O 

Substituting (1.2), (1.3) into (1.1). we find that 

PO (SO) = 0 (1.4) 

This relation is one of the necessary synchronism conditions. After the change of varia- 

bles suggested in [S] 
$==+Pfi, (Fa-+--fim+h_, h-=1,2 ,..., n, n=r--m (1.5) 

Equation (1.1) is written as 

q’ = a (z) + aa (cp, 9, 5, a), 9. = b (x) + EY (cp, ‘Ic1, 2, a) (1.6) 

Ic’ = ax (cp, $, 2) + E2Y (($9 $9 2, a) 

Here cp is a vector with components cpl, “p2, . . ., Cp,.-,,,, while the vector-valued func- 

tions a (x), b (x) are expressed in terms of o (x), so that 

b (xc> = + PO (4, aj (X) = + Wn+j (X)7 i=l, 2,. . ., n 

All the functions occurring in (1.6), naturally. remain sufficiently smooth and 

odic in the components of vectors rp and I#. The vector b (z) vanishes for X 
while the components of vector a (x0) are rationally linearly independent. 

2n -peri- 
= x0, 
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In the new variables the 

.z = 

Therefore, the conditions 

integral surface (1.2) can be written as 

SC” + ah (9, 81, 4 = $” + ag (cp,e) 
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must be fulfilled for i = 1, 2, . . ., s , from which it follows that the mean of the 
vector-valued function X (9, @, z”) over all the variables cpl, ~a, . . . , (Pi vanishes, 
i.e., 

<x (tp, cp”, X0) > ‘p = 0 (I. 7) 

Conditions (1.7), as also conditions (1.4). are necessary synchronism conditions. 

2. Anriyrft of the necetrrry ryachronlsm conditions. Let 

X (b z, = x (% $9 x) = xX&, k,, . . . . k, exp [Ii ji kiB,] = (2.1) 

xxk, kt. .-.I k, exp [j i$ ‘hgpi + i j r,‘h] 

Allowing for the specific form of the connections between p and v, 9, we find that 

When averaging (2.1) over all components of vector qj in expansion (2. I) there can re- 
main only those terms in which Qr = . . . = qn = 0 or, equivalently, only those 
terms in which the integer vector k is a linear combination of the row vectors of matrix 

P (k E L (PI, P,, . . ., Pm)). Hence it follows, in particular, the fulfillment of the 
inequalities 

Ix,,O ,,.., &%<$ax 2 I&ks,kr ,..., k,(%p)I (2*3) 

o+kEL(P,, Ps. . . . . P,,,, 

By the order of synchronism we mean the number p* defined 

P *= min rdaxfIc, 1 
o#kELfPz, Pe, s.., Pm) lG<r 

If S 

by the formula 

(2.4) 

z z,o,...,om#=o 
and the trigonometric series (2.1) converge absolutely, the fulfillment of estimate (2.3) 
is possible for not very large values of the order of multiplicity of the synchronism. In 
the case when the function X, (IC’, p) is differentiable some number 7 times with 
respect to the variables PI, &, . . ., fl,., the coefficients of its Fourier series satisfy 

As a consequence, inequalities (2.3) take the form 



We generalize all we have said on the necessary synchronism conditions in the follow- 
ing theorem. 

Theorem 1. For an m-th degree synchronism to exist in a dynamic system des- 
cribed by differential equations (1. l), it is necessary that for certain constant vectors 

z” and $” : (1) the m linearly-independent integer relations (1.4) be fulfilled ; (2) the 

mean value of the function X (cp, $;", so) over the collection of variables qr, (pz, . . ., 
(v~ equal zero (relations (1.7)), which, in turn, requires the fulfillment of conditions 

(2.3) possible, in general, only for not very large synchronism orders. 

3. Sufficient conditions for exittenet of ryachronitm, Let the 
necessary sync~onism conditions (1,4) and (1.7) have been fulfilled. We can treat them 
as M -/- s equations in the m + s components of the constant vectors 2’ and lb’. To 

obtain the sufficient existence conditions for synchronism we transform Eqs, (1.6) to 
equations with constant frequencies of the form 

rp: - 0 -t &@ (cp, U, a) (3.1) 
2;: = EF (cp) -+ il (E)U + EL (q)v + EV (Cp, u, a) 

Here all functions are continuous in e, twice continuously differentiable with respect to 

the components of vectors 9, and v, the components of the constant vector 0 are ration- 

ally incommensurable, the vector-valued function P’ (cp, 0, 0) and the mean values of 

the vector-valued function F fcp) and of the matrix _& (rp) over the collection of com- 

ponents of vector cp equal zero, and the estimate 

II exp (A f+) Ii < 1 - azr, II A (E) Ii < J&M (3.2) 

hold for some a > 0 and for sufficiently small E > 0, ET > 0. 
As shown in [ 101, the system of equations (3.1) admits, under the conditions listed, of 

a unique stable smooth integral toroidal manifold 

ZJ = f (% a) (3.3) 

in some region 11 2, [I < 6, ; here the vector-valued function f (cp, E) is continuous in 

l a and vanishes for 8 = 0. 
In system (1.6) we make the change of variables 

5 II _$ -{- &Z* -i- &A (9) -i- EZ -/- 

$ = +? + JG7.7 _t &** + EB (y) 

&y’-~c (Y)Y (3.4) 

where z and y are the new variables, the vector-valued functions A (g) and B (cp), 
the matrix c (cp), the constant vectors x* and $* are to be defined. In the new vari- 
ables system (1.6) takes the form 

(3.5) 
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v’i- (Y (cp, v, q>* + Z/E Y* tfp, v1 e j_ 
2-g-%(,),. E~l(w&Y*IY+ * * * 

We simplify system (3.5) by choosing the vector-valued functions A (cp) and B (cp), 
as well as the matrix C (cp), so as to satisfy the following relations: 

vcO= x*&J $0, J;O), ac (TP) acpo= 
ax* ($J, rp”, 2’) 

a$ 
(3.6) 

aBoW= 
%J 

69 A (9) + yP* (cp, 9”s z*:‘) 

Here w denotes the constant vector n (x”), the meanvalues of the vector-valued func- 
tions X* (cp,+“, 9) and Y * (cp,$P, z”) over the collection of variables ‘pl, %, . . -, 
On equal zero. We assume that the components of the vector o = a (2) satisfy the 
conditions of strong incommens~abili~ 

I &~I + . * . + ho, I > K (I k, I t . . . 4 I k, I VP, P > 0 (3.7) 

The vector-valued functions A (rp), B (q) and the matrix C (cp) are at least twice 

continuously differentiable solutions of the system of equations (3.6) if the vector-valued 

function X* (cp, $", z') is ( 2n -t_ 2p + 4) times continuously differentiable.while 
the vector-valued function y[r* (tp, %#“, S) and the matrix 8X (rp, q”, S)/dtj, are 

( ?r j- p + 3 ) times continuously differentiable [6]. 
We choose ‘the vectors 2* and I#* as the solution of the system of equations 

ab (29 
-Ypr* + (Y (cp, v, so)>, = 0 (3.8) 

& (X(% 11”, +,x* i- -& (X (tp, q”, s&$* + (Y (9, **t”t 4>, + G%P = 0 

Here (2 (qp, ‘$*, Z”)>Q is the mean value of the vector-valued function 

over the collection of variables rp,, us, . . . , cp, . It was shown in [Ill that under 
rather general assumptions the system of nonlinear equations (3.8) admits a certain solu- 

tion (s* ,S*)- Thus, system (3.5) takes the following form: 
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Were the mean values of the vector-valued function F,,* (cp), and of the matrices 

F,s*(fp) and Fst*(cp) over the collection of variables ‘pr, (p2, . . . , cplk equal zero, 

while the vector-valued functions Z* and Y* satisfy the estimate 

We now introduce the following notation. If the order s of the square matrix (a/&c) x 

(JO, is not less than the order rn of the square matrix (fi/@)(?!!),, then 

A= k(X), B--&-(X), C=$, E+y> 
Conversely, if s < m, then 

Thus, by changing if necessary the places of the variables z and y in system (3.9), it is 

sufficient to investigate the asymptotic nature of the eigenvectors and eigenvafues ofthe 

matrix 

for sufficiently small 0 < p < p. , Here the square matrix A is of order n = 

max (s, m), while the square matrix E is of order r = min (s, m). For the eigen- 

values of matrix H (p) to have negative real parts, it is necessary that all the eigenva- 

lues of the matrix Cb be real and negative [8]. 

We suppose the fulfillment of the following assumptions 183 : 
1) The eigenvalues of matrix CB are real, negative, and distinct. The correspond- 

ing numbers 
Ei _= (3.11) 

where the matrix O* (hi) is composed of the cofactors of the corresponding elements 

of the matrix St (hi) = CB - iLil, are negative. 
2) If ?z > r , the equation 

(3.12) 

has n - r distinct roots pl, (b2, . . . , p,,_+., lying to the left of the imaginary axis, 
When these assumptions are fulfilled, all the eigenvalues of matrix H (cc) are distinct 

and have negative real parts: the matrix composed of the eigenvectors of .?l fp) is non- 
singular for p :- 0 [S]. This signifies that the system of equations (3.9) reduces, by a 

nonsingular tra~formation of variables, to the form (3.1) with the fulfillment of estim- 
ates (3.2). The following theorem hoids. 

Theorem 2. Assume rhat: 
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1) The right hand sides of the system of differential equations (1.1) satisfy the 
previously -stated conditions of periodicity and smoothness. 

2) The necessary synchronism conditions formulated in Theorem 1 are fulfilled 

for some vectors 2’ and 1c;“. 
3) The components of vector o (5‘) satisfy the strong incommensurability con- 

ditions (3.7). 

4) The solution z*, $* of system (3. 8) exists. 
5) The assumptions ensuring the special asymptotic behavior of the eigenvalues 

and eigenvectors of matrix H (p) are fulfilled. 

Under these assumptions the system of equations (1.1) admits. for sufficiently small 

F , of an n-dimensional smooth integral stable toroidal manifold. of the form 

J: = X0 + i?x* t Ed ((E) + Efl (cp, E) (3.13) 

‘II, = q” t J’-‘$2 (CF, E) + E$* + EB (VI 

unique in the region 
(3.14) 

11 Ic - 2Q - &X* - &(P)I)\<& 114-~\I-1”-&4*-EB((F;()\(1/E6” 

where 6, is some fixed number. The functions f, CT-, E) and iz (v, E) are continuous 

in E and tend to zero together with e. 

We note that if the eigenvalues of matrix CB are distinct and if nonzero numbers li, 

defined by formula (3.11). correspond to the real and negative eigenvalues and if Eq. 
(3.12) has n - r distinct roots lying on both sides of the imaginary axis, then the to- 

roidal integral manifold (3.13) exists also, but is a saddle manifold ( *). 

4. Synchronism in a quasi-Hamiltonirn 8yatem. As an application 
of necessary and sufficient existence conditions for synchronism we consider the synchro- 

nization problem in a system of objects described by equations of the form (E > 0 is 
a small parameter) 

‘PO’ = (00, ‘Fi’ = Oi (Ji) - E $ Qi +g + &2(...) 1 (4.1) 
1 z 

Jim = E +-;gq +E2(...) (i-1,2,. ,) n) 
1 ? 

where 

Xi = Xi ((pi> Ji), Qi = Qi (vi- Ji) (4.2) 

L = L (cp,, (~1, (p.3, . . ., (in, J,, J,, . . ., J,) 
Periodic solutions (n th-degree synchronism of the first order of multiplicity) have been 
studied in [12]. 

Suppose that the first of the necessary synchronism conditions (1.4) has been fulfilled 
for some vector J”. We write down formula (1.5) defining the change of variables in 

the new notation of the system of equations (4.1) 

*) Gurtovnik, A. S., Kogan, V. P. and Neimark, Iu.1.. Integral toroidal manifolds in 
nonlinear systems. Third All-Union Conf. Qualitative Theory of Differential Equations 
(Reports Abstracts). Samarkand, 1973. 
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*SC +%zY viz+ i: *ip,qP, (s=O, I,..., n-m; l=I,Z ,..., m) (4.3) 
iIS=0 

System (4. I) takes the form 

I$(++%, -I&&‘= +{c%(Ja)- E[$.O,+~]}+eZ(...) (4.4) 

q’- +-{Ihw- 5 Pia[%(J,)-- (+?a f $)]} +E2(...) 
CC--l 

J ti ‘Se 2k&++- 
I 

+E2(...) fs==2 ,..., n-m;i=l, . . . . m;k=l,..., n) 
k 

We introduce the following notation: 

where the symbol ( ) denotes averaging over the collection of variables qO, . . ., qrn. 
As has been shown, the existence of vectors J” and ~“satisfjrfng the system of nonlinear 
equations 

PiOOO -t i Pi&% (Ja) = 0% Ak (J, v) = 0 (4.6) 
CC=1 

(i = 1, 2,. . ., m; k = 1, 2, . . ., n) 

is a necessary condition for an m th-degree synchronism, We assume that system (4.6) 

admits a certain isolated solution J”, d’ for which the components of vector o,,, 

%(JlO), * * *7 o,_, (Jp,_,) satisfy the strong incommensurability conditions (3.7). 

As before we suppose that the assumptions ensuring the special asymptotic behavior of 

the eigenvalues and eigenvectors of matrix H (p ), which in the new notation (4.5) has 

the form 

u$ 
3.-f 

aU 
H(P) = 8b aR (4.7) 

aJ uz 

are fulfilled. By virtue of Theorem ‘2 an mth-order ~nc~o~srn obtains in the system 
of equations (4.1) ; in other words, system (4.1) admits a stable integral manifold of the 
form 

J = Jo + f (~0, ‘~1, . . ., vn-n, P)? 
(4.8) 

2’ = uc +- g ~~,,a cpl, . . ., (r,L_,,; p) 
where the vector-valued functions f and g tend to zero with p. 

Let us examine at somewhat greater length the stability condition for integral mani- 
fold (4.8), asserting that all the eigenvalues of the matrix (c% / BJ)(U / au) are nega- 
tive. In view of the fact that each of the functions xi and Qi depends only upon the 
two variables (Pi and Ji, the following relations hold : (4.8) 
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Let exp [I fkocpo -I- klcpl i- - . . + k&J1 be any harmonic of function L (rp, J) which 
after the change of variables (4.3) takes the form 

n---m 

=P i 
Lx 

9i*.j + i i ‘iuS 
i=o i=l. 

1 

wtme fzo, ql, . . ., qn+?,, rlr 9, . + -, r, are certain integers. When averaging over tbe 
collectiou of variables 9,,, ql, - . ., jh.m , those and only those harmonics remain in 
which go = q1 = . . . = qn_m= 0. By virtue of relations (4.3) this signifies that 

<+!$>=h~psi-&-* (i==l, 2,.. . . . n) (4.10) 

A=(L)+-=: ~~~-~“~ .-.~Ld~od~~..d~,_, 

0 0 

Thus, for the stability of the integral torus (4.8) it is necessary that the eigenvalues of 
the matrix 

bb bA “P 7j77$7==A2 (4.11) 

be real and negative. Here P is a rectangular matrix Pij (i = 1, 2, . . ., m; j = 1, 2, 
. . .) n) of rank m. 

Let all the quantities doi/dJi be of the same sign, i.e. 

do1 d% -- . . . = sign tir - sign dJ, = r5 

If the matrix cIr@J is positive- (negative-) definite, then the matrix product P (do/ 
Car) PT also is a symmetric positive- (negative-) definite matrix under the condition 
that the rank of the rectangular matrix P is maximal [13]. The eigenvalues of matrix 
(4.11) are real, and the signs of the smallest amin and of the largest h,,,, are the same as 
the signs of the smallest ?&, and of the largest Lgax eigenvalues of the matrix css [13j. 
Thw, for the stability of integral term (4.8) it is necessary that the symmetric matrix 
- a,$ be positive definite. 

We seek a potential function D (.I’, u) p. 121 of the form 

D =i - d A (J’, V) + i hi (f”) Vi] 
i=l 

From the form of function D it follows that 

By virtue Of (4.5) and ;4.10) the 

avpj 
(4.6) takes the form 

From relations (4.12) follows the matrix equality 

(p<$-Q>+&'T -$},=,o, ,,_o==O 

The parameters h, (J1”), . - -9 bt (fm”) are defined as the solution of the system of lin- 
ear equations 
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-+“h= P<gQ>.,=,. 

For such a choice of parameters lLlr h,, . . ., h, the function B (J”, v) satisfies, at the 

point v = v" , the conditions of stationarity and of strict minimum, based on the analysis 

of second-order terms, if the matrix -sQ is positive definite. 

The necessary and sufficient conditions obtained agree in the particular case of total 

synchronism with the results obtained in [123. 
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